Monday, 7 January 2013

History of Oracle Corporation.

History of Oracle Corporation.

1)June 16, 1977: Oracle Corporation was incorporated in Redwood Shores, California as Software Development Laboratories (SDL) by Larry Ellison, Bob Miner and Ed Oates.

2)June 1979: SDL is renamed to Relational Software Inc. (RSI), and relocates to Sand Hill Road, Menlo Park, California. Oracle 2, the first version of the Oracle database software runs on PDP-11 and is sold to Wright-Patterson Air Force Base. The company decides to name the first version of its flagship product version 2 rather than version 1 because it believes companies may hesitate to buy the initial release of its product (and, or IBM would not divulge to render the original take).

3)October 1979: RSI actively promotes Oracle on the VAX platform (the software runs on the VAX in PDP-11 emulator mode)

4)1981 Umang Gupta joined Oracle Corporation where he wrote the first business plan for the company, and served as Vice President and General Manager of the Microcomputer Products.

5)February 1981: RSI begins developing tools for Oracle, including the Interactive Application Facility (IAF), a predecessor to Oracle*Forms.

6)Bruce Scott was one of the first employees at Oracle (then Software Development Laboratories). He co-founded Gupta Technologies (which later became Centura Software) in 1984 with Umang Gupta, and later became CEO and founder of PointBase, Inc. Bruce was co-author and co-architect of Oracle V1, V2 and V3. He created the sample schema "SCOTT" (containing tables like EMP and DEPT) with the password defaulted to TIGER (apparently named after his cat).

7)March 1983: RSI rewrites Oracle in C for portability and Oracle version 3 is released. RSI is renamed to Oracle to more closely align with its primary product. The word Oracle was the code name of a CIA project which the founders had all worked on while at the Ampex Corporation.

8)April 1984: Received additional funding from Sequoia Capital.

9)October 1984: Oracle version 4 released, introducing read consistency.

10)November 1984: Oracle ports the database software to the PC platform. The MS-DOS version (4.1.4) of Oracle runs in only 512K of memory. Oracle for MSDOS version 5 was released in 1986 running in Protected Mode on 286 machines using a technique invented by Mike Roberts, among the first products to do so.

11)April 1985: Oracle version 5 released. It is one of the first RDBMSs to operate in client-server mode.

12)1986: Oracle version 5.1 released with support for distributed queries. Investigations into clustering begin.

13)March 12, 1986: Oracle goes public with revenues of $55 million USD.

14)August 1987: Oracle founds its Applications division, building business management software closely integrated with its database software. Oracle acquires TCI for its project management software.

15)1988: Oracle version 6 is released with support for row-level locking and hot backups. The PL/SQL procedural language engine was embedded in the database but no provision was made to store program blocks such as procedures and triggers in the database - this capability was added in v7. PL/SQL blocks could be submitted for immediate execution in the server from an environment such as SQL*Plus, or via SQL statements embedded in a host program. Separate PL/SQL engines were included in various client tools (SQL*Forms, Reports).

16)1989: Oracle moves world headquarters to Redwood Shores, California. Revenues reach US$584 million.

17)1990: In the third quarter, Oracle reports its first ever loss, hundreds of employees are laid off. Ellison hires Jeffrey O. Henley as CFO and Raymond Lane as COO.

18)June 1992: Oracle 7 released with performance enhancements, administrative utilities, application development tools, security features, the ability to persist PL/SQL program units in the database as stored procedures and triggers, and support for declarative referential integrity.

19)1993: Releases Oracle's Cooperative Development Environment (CDE) which bundles Oracle Forms, Reports, Graphics, Book.

20)1994: Oracle acquired the database-product DEC Rdb (now called Oracle Rdb) from Digital Equipment Corporation (DEC) and development is still going on. Oracle Rdb is only available on the OpenVMS platform (also a former product of DEC).

21)June 21, 1995: Oracle announces new data warehousing facilities, including parallel queries.

22)November 1995: Oracle is one of the first large software companies to announce an internet strategy when Ellison introduces the network computer concept at an IDC conference in Paris.

23)April 1997: Oracle releases the first version of Discoverer, an ad-hoc query tool for business intelligence.

24)June 1997: Oracle 8 is released with SQL object technology, internet technology and support for terabytes of data.

25)September 1997: Oracle announces its commitment to the Java platform, and introduces Oracle's Java integrated development environment, which will come to be known as Oracle JDeveloper.

26)January 1998: Oracle releases Oracle Applications 10.7 NCA. All the applications in the business software now run across the web in a standard web browser.

27)May 1998: Oracle Applications 11 is released.

28)April 1998: Oracle announces that it will integrate a Java virtual machine with Oracle Database.

29)September 1998: Oracle 8i is released.

30)October 1998: Oracle 8 and Oracle Application Server 4.0 are released on the Linux platform.

31)May 1999: Oracle releases JDeveloper 2.0, showcasing Business Components for Java (BC4J), a set of libraries and development tools for building database aware applications.

32)2000: OracleMobile subsidiary founded. Oracle 9i released.

33)May 2000: Oracle announces the Internet File System (iFS), later rebranded as Oracle Content Management SDK.

34)June 2000: Oracle9i Application Server released with support for building portals.

35)2001: Ellison announces that Oracle saved $1 billion implementing and using its own business applications.

36)2004: Oracle 10g released.

37)December 13, 2004: After a long battle over the control of PeopleSoft, Oracle announces that it has signed an agreement to acquire PeopleSoft for $26.50 per share (approximately $10.3 billion).

38)January 14, 2005: Oracle announces that it will reduce its combined workforce to 50,000, a reduction of approximately 5,000 following the PeopleSoft take over. 90% of PeopleSoft product development and product support staff will be retained.

39)March, 2005: Oracle extends its Middle East operations by opening a regional office in Amman, Jordan.

40)September 2005: Oracles announces that it has agreed to acquire Global Logistics Technologies, Inc. (private company), a global provider of logistics and transportation managements software (TMS) solutions through a cash offer.

41)September 12, 2005: Oracle announces it had agreed to buy Siebel Systems, the global leader in CRM technologies and a key player in the BI realm, for $5.8 billion.

42)October 25, 2006: Oracle announces Unbreakable Linux.

43)November 2, 2006: Oracles announces that it has agreed to acquire Stellent, Inc. (NASDAQ: STEL), a global provider of enterprise content management (ECM) software solutions, through a cash tender offer for $13.50 per share, or approximately $440 million.

44)December 15, 2006, a majority of MetaSolv stockholders approved Oracle’s acquisition of MetaSolv Software, a Leading Provider of Operations Support Systems (OSS) Software for the Communications Industry.

45)March 1, 2007: Oracle announced that it has agreed to buy Hyperion Solutions Corporation (Nasdaq: HYSL), a leading global provider of performance management software solutions, through a cash tender offer for $52.00 per share, or approximately $3.3 billion. The transaction is subject to customary conditions and is expected to close in April 2007.

46)March 22, 2007: Oracle filed a court case against its major competitor SAP AG in the Californian courts for malpractice and unfair competition. The full text of the filing can be found on the claimants web site under the heading newsroom.

47)October 12, 2007: Oracle announced that it had made a bid to buy BEA Systems for a price of $17/share, an offer that was rejected by the BEA board who felt that the company was worth more than that.

48)October 16, 2007: Oracle confirms impending departure of John Wookey, senior vice president for application development and head of its applications strategy, raising questions in the planned release and future of Oracle's Fusion Applications strategy.

49)January 16, 2008: Oracle announces it is buying BEA Systems for $19.375/Share in cash for a total of '$7.2 billion net of cash.'




1978 -> Oracle V1; first commercial SQL relational database management system (RDBMS), Main architect Bob Miner, ran on pdp-11 under rsx; 128Kb memory, written in assembly, separated oracle and user codesto overcome the memory limitations

1979 -> Oracle V2; written in pdp-11 assembly language, ran on vax/vms in compatibility mode

1980 -> Oracle V3; written in C, soptable source code, introduced Transactions

1984 -> Oracle V4; introduced read consistency, ported to many plathforms, first interopability between PC and server

1986 -> Oracle V5; true client-sever, vax cluster support, distributed queries

1989 -> Oracle V6; OLTP performance enhancements, online backup/recovery, row level locking, plsql language, parallel server

1993 -> Oracle V7; declarative referential integrity, stored procedures and triggers, shared SQL, parallel execution, Advanced replication

1997 -> Oracle V8; Object-relational database, three-tier architecture, partitioning

1999 -> Oracle V8i; Java in database and native java support, XML support, Oracle Internet Directory, Summary management interMedia, Data warehousing enhancements, ported to Linux, Business components for java(BC4J), WebDB introduced(eventually mature into Portal and ApEx)

2001 -> Oracle V9i; Automatic segment space management, Real Apllication Clusters, Internet security enhancements, Data Guard, Advanced globalization support, record-breaking TPC-C benchmark results, 1st to complete 3 terabyte TPC-H world record

2003 -> Oracle V10g; Enterprise Grid Computing, 64-bit Linux with IPF

2005 -> Oracle VXE; free Oracle 10gR2 database

2007 -> Oracle V11g; as announced at Openworld 2006

In a nutshell, Version Date Release Name

Oracle
Release Date
2 June 1979
3 March 1983
4 October 1984
5.0 April 1985
6.0 July 1988
7.0 June 1992
7.1 May 1994
7.2 May 1995
7.3 February 1996
8.0 June 1997 Oracle 8
8.1.5 February 1999 Oracle 8i Release 1
8.1.6 November 1999 Oracle 8i Release 2
8.1.7 August 2000 Oracle 8i Release 3
9.0.1 June 2001 Oracle 9i Release 1
9.2 May 2002 Oracle 9i Release 2
10.1 January 2004 Oracle 10g Release 1
10.2 July 2005 Oracle 10g Release 2

Thursday, 3 January 2013

ORACLE DATABASE HEALTH CHECKUP COMPLETE....IMPORTANT

 
 Oracle Database Health check scripts
Hi All,
Lot of time DBAs are asked to check the health of the Database,Health of the Database can be check in various ways.It includes:

SL No Monitoring Scope Current Status OS Level
1 Physical memory / Load :Load normal, Load averages: 0.35, 0.37, 0.36
2 OS Space threshold ( archive, ora_dump etc.. ) :Sufficient Space available.
3 Top 10 process consuming memory:No process using exceptional high memory
4 Free volumes available :Sufficient disk space is available on the mount points
5 Filesystem space Under normal threshold
Database level.
6 Check extents / Pro active Space addition:Space is being regularly added.
7 Check alert log for ORA- and warn messages.
8 Major wait events (latch/enqueue/Lib cache pin) No major wait events
9 Max Sessions
10 Long running Jobs 6 inactive sessions running for more than 8 hrs
11 Invalid objects 185
12 Analyze Jobs ( once in a week ) Done on 20-JAN-2008 Time 06:00:06
13 / Temp usage Rollback segment usage Normal
14 Nologging Indexes
15 Hotbackup/Coldbackup Gone fine
16 Redo generation normal
17 PQ proceses Normal
18 I/O Generation Under normal threshold
19 2 PC Pending transactions 0
DR / backup
1 Sync arch Normal
2 Purge arch Normal
3 Recovery status Normal
20)DATABASE HEALTH CHECK SCRIPT: Showing locks and Archive generation details

In Detail DATABASE Health check:
OPERATING SYSTEM:

1)Physical memory/ Load:
1) Free:free command displays amount of total, free and used physical memory (RAM) in the system as well as showing information on shared memory, buffers, cached memory and swap space used by the Linux kernel.
Usage:
$ free -m

2) vmstat:vmstat reports report virtual memory statistics, which has information about processes, swap, free, buffer and cache memory, paging space, disk IO activity, traps, interrupts, context switches and CPU activity
Usage:
$vmstat 5

3) top:top command displays dynamic real-time view of the running tasks managed by kernel and in Linux system. The memory usage stats by top command include real-time live total, used and free physical memory and swap memory with their buffers and cached memory size respectively
Usage:
$top
4) ps :ps command reports a snapshot on information of the current active processes. ps will show the percentage of memory resource that is used by each process or task running in the system. With this command, top memory hogging processes can be identified.
Usage:
$ps aux

2) OS Space threshold ( archive, ora_dump etc.. ):
Checking the OS space is available in all filesystems,specially the location which is having archive logs ,oracle Database files.We can use the below OS commands:
$df –h
$du –csh *
3) Top 10 process consuming memory:
We can Displaying top 10 memory consuming processes as follows:

ps aux|head -1;ps aux|sort -m

We can use the top command, and press M which orders the process list by memory usage.

4) Free volumes available:

We have to make sure Sufficient disk space is available on the mount points on each OS servers where the Database is up and running.

$df –h

5)Filesystem space:

Under normal threshold. Check the filesystem in the OS side whether the sufficient space is available at all mount points.

DATABASE:

6) Check extents / Pro active Space addition:
Check each of the Data, Index and temporary tablespaces for extend and blocks
Allocation details.

SET LINES 1000
SELECT SEGMENT_NAME,TABLESPACE_NAME,EXTENTS,BLOCKS
FROM DBA_SEGMENTS;

SELECT SEGMENT_NAME,TABLESPACE_NAME,EXTENTS,BLOCKS
FROM DBA_SEGMENTS WHERE TABLESPACE_NAME=’STAR01D’;

7) Check alert log for ORA- and warn messages:

Checking the alert log file regulary is a vital task we have to do.In the alert log files we have to looks for the following things:

1) Look for any of the oracle related errors.
Open the alert log file with less or more command and search for ORA-
This will give you the error details and time of occurrence.

2) Look for the Database level or Tablespace level changes
Monitor the alert log file and search the file for each Day activities happening
In the Database either whether it is bouncing of Database.Increase in the size of the tablespaces,Increase in the size of the Database parameters.In the 11g Database we can look for TNS errors in the alert log file.

8) Major wait events (latch/enqueue/Lib cache pin):

We can check the wait events details with the help of below queries:

SELECT s.saddr, s.SID, s.serial#, s.audsid, s.paddr, s.user#, s.username,
s.command, s.ownerid, s.taddr, s.lockwait, s.status, s.server,
s.schema#, s.schemaname, s.osuser, s.process, s.machine, s.terminal,
UPPER (s.program) program, s.TYPE, s.sql_address, s.sql_hash_value,
s.sql_id, s.sql_child_number, s.sql_exec_start, s.sql_exec_id,
s.prev_sql_addr, s.prev_hash_value, s.prev_sql_id,
s.prev_child_number, s.prev_exec_start, s.prev_exec_id,
s.plsql_entry_object_id, s.plsql_entry_subprogram_id,
s.plsql_object_id, s.plsql_subprogram_id, s.module, s.module_hash,
s.action, s.action_hash, s.client_info, s.fixed_table_sequence,
s.row_wait_obj#, s.row_wait_file#, s.row_wait_block#,
s.row_wait_row#, s.logon_time, s.last_call_et, s.pdml_enabled,
s.failover_type, s.failover_method, s.failed_over,
s.resource_consumer_group, s.pdml_status, s.pddl_status, s.pq_status,
s.current_queue_duration, s.client_identifier,
s.blocking_session_status, s.blocking_instance, s.blocking_session,
s.seq#, s.event#, s.event, s.p1text, s.p1, s.p1raw, s.p2text, s.p2,
s.p2raw, s.p3text, s.p3, s.p3raw, s.wait_class_id, s.wait_class#,
s.wait_class, s.wait_time, s.seconds_in_wait, s.state,
s.wait_time_micro, s.time_remaining_micro,
s.time_since_last_wait_micro, s.service_name, s.sql_trace,
s.sql_trace_waits, s.sql_trace_binds, s.sql_trace_plan_stats,
s.session_edition_id, s.creator_addr, s.creator_serial#
FROM v$session s
WHERE ( (s.username IS NOT NULL)
AND (NVL (s.osuser, 'x') <> 'SYSTEM')
AND (s.TYPE <> 'BACKGROUND') AND STATUS='ACTIVE'
)
ORDER BY "PROGRAM";

The following query provides clues about whether Oracle has been waiting for library cache activities:

Select sid, event, p1raw, seconds_in_wait, wait_time
From v$session_wait
Where event = 'library cache pin'
And state = 'WAITING';

The below Query gives details of Users sessions wait time and state:

SELECT NVL (s.username, '(oracle)') AS username, s.SID, s.serial#, sw.event,
sw.wait_time, sw.seconds_in_wait, sw.state
FROM v$session_wait sw, v$session s
WHERE s.SID = sw.SID
ORDER BY sw.seconds_in_wait DESC;

9) Max Sessions:
There should not be more than 6 inactive sessions running for more than 8 hours in a Database in order to minimize the consumption of CPU and I/O resources.

a)Users and Sessions CPU consumption can be obtained by below query:

Set lines 1000
select ss.username, se.SID,VALUE/100 cpu_usage_seconds
from v$session ss, v$sesstat se, v$statname sn
where se.STATISTIC# = sn.STATISTIC#
and NAME like '%CPU used by this session%'
and se.SID = ss.SID and ss.status='ACTIVE'
and ss.username is not null
order by VALUE desc;


b) Users and Sessions CPU and I/O consumption can be obtained by below query:

-- shows Day wise,User wise,Process id of server wise- CPU and I/O consumption
set linesize 140
col spid for a6
col program for a35 trunc
select p.spid SPID,to_char(s.LOGON_TIME,'DDMonYY HH24:MI') date_login,s.username,decode(nvl(p.background,0),1,bg.description, s.program ) program,
ss.value/100 CPU,physical_reads disk_io,(trunc(sysdate,'J')-trunc(logon_time,'J')) days,
round((ss.value/100)/(decode((trunc(sysdate,'J')-trunc(logon_time,'J')),0,1,(trunc(sysdate,'J')-trunc(logon_time,'J')))),2) cpu_per_day
from V$PROCESS p,V$SESSION s,V$SESSTAT ss,V$SESS_IO si,V$BGPROCESS bg
where s.paddr=p.addr and ss.sid=s.sid
and ss.statistic#=12 and si.sid=s.sid
and bg.paddr(+)=p.addr
and round((ss.value/100),0) > 10
order by 8;

10) Long running Jobs:

We can find out long running jobs with the help of the below query:

col username for a20
col message for a50
col remaining for 9999
select username,to_char(start_time, 'hh24:mi:ss dd/mm/yy') started,
time_remaining remaining, message
from v$session_longops
where time_remaining = 0
order by time_remaining desc;

11) Invalid objects:

We can check the invalid objects with the help of the below query:

select owner||' '||object_name||' '||created||' '||status from dba_objects where status='INVALID';

12) Analyze Jobs ( once in a week ):

We need to analyze the jobs that are running once in a week as a golden rule.
The below steps can be considered for analyzing jobs.

Analyzing a Running Job
The status of a job or a task changes several times during its life cycle. A job can have the following as its status:
Scheduled: The job is created and will run at the specified time.
Running: The job is being executed and is in progress.
Initialization Error: The job or step could not be run successfully. If a step in a job fails initialization, the job status is Initialization Error.
Failed: The job was executed but failed.
Succeeded: The job was executed completely.
Stopped: The user canceled the job.
Stop Pending: The user has stopped the job. The already running steps are completing execution.
Suspended: This indicates that the execution of the job is deferred.
Inactive: This status indicates that the target has been deleted.
Reassigned: The owner of the job has changed.
Skipped: The job was not executed at the specified time and has been omitted.
The running jobs can be found out by the help of below query:

select sid, job,instance from dba_jobs_running;

We can find out the failed jobs and Broken jobs details with the help of the Below query:

select job||' '||schema_user||' '||Broken||' '||failures||' '||what||' '||last_date||' '||last_sec from dba_jobs;

13) Temp usage / Rollback segment/PGA usage:

We can get information of temporary tablespace usage details with the help of below query:
Set lines 1000
SELECT b.tablespace,
ROUND(((b.blocks*p.value)/1024/1024),2)||'M' "SIZE",
a.sid||','||a.serial# SID_SERIAL,
a.username,
a.program
FROM sys.v_$session a,
sys.v_$sort_usage b,
sys.v_$parameter p
WHERE p.name = 'db_block_size'
AND a.saddr = b.session_addr
ORDER BY b.tablespace, b.blocks;

We can get information of Undo tablespace usage details with the help of the below query:
set lines 1000
SELECT TO_CHAR(s.sid)||','||TO_CHAR(s.serial#) sid_serial,
NVL(s.username, 'None') orauser,
s.program,
r.name undoseg,
t.used_ublk * TO_NUMBER(x.value)/1024||'K' "Undo"
FROM sys.v_$rollname r,
sys.v_$session s,
sys.v_$transaction t,
sys.v_$parameter x
WHERE s.taddr = t.addr
AND r.usn = t.xidusn(+)
AND x.name = 'db_block_size';

We can get the PGA usage details with the help of the below query:
select st.sid "SID", sn.name "TYPE",
ceil(st.value / 1024 / 1024/1024) "GB"
from v$sesstat st, v$statname sn
where st.statistic# = sn.statistic#
and sid in
(select sid from v$session where username like UPPER('&user'))
and upper(sn.name) like '%PGA%'
order by st.sid, st.value desc;
Enter value for user: STARTXNAPP
14)Validating the Backup:

We have to verify the Hotbackup/Coldbackup(or any physical or logical backup) of all the Production and non-production Databases went fine.Make sure you are having a valid backups of all the Databases.Check the Backup locations to make sure the Backup completed on time with the required Backup data.

14)Hotbackup/Coldbackup:
Validating the backup of Database.It should complete on time with the required data for restoring and recovery purpose if required.

15) Redo generation/Archive logs generation details:
We should make sure there should not be frequent log switch happening in a Database.If there are frequent log switches than archive logs might generate more which may decrease the performance of the Database however in a production Database log switches could vary depending upon the Server configuration between 5 to 20.

We can the log switch details with the help of the below query:

Redolog switch Datewise and hourwise:
-------------------------------
set lines 120;
set pages 999;
select to_char(first_time,'DD-MON-RR') "Date",
to_char(sum(decode(to_char(first_time,'HH24'),'00',1,0)),'99') " 00",
to_char(sum(decode(to_char(first_time,'HH24'),'01',1,0)),'99') " 01",
to_char(sum(decode(to_char(first_time,'HH24'),'02',1,0)),'99') " 02",
to_char(sum(decode(to_char(first_time,'HH24'),'03',1,0)),'99') " 03",
to_char(sum(decode(to_char(first_time,'HH24'),'04',1,0)),'99') " 04",
to_char(sum(decode(to_char(first_time,'HH24'),'05',1,0)),'99') " 05",
to_char(sum(decode(to_char(first_time,'HH24'),'06',1,0)),'99') " 06",
to_char(sum(decode(to_char(first_time,'HH24'),'07',1,0)),'99') " 07",
to_char(sum(decode(to_char(first_time,'HH24'),'08',1,0)),'99') " 08",
to_char(sum(decode(to_char(first_time,'HH24'),'09',1,0)),'99') " 09",
to_char(sum(decode(to_char(first_time,'HH24'),'10',1,0)),'99') " 10",
to_char(sum(decode(to_char(first_time,'HH24'),'11',1,0)),'99') " 11",
to_char(sum(decode(to_char(first_time,'HH24'),'12',1,0)),'99') " 12",
to_char(sum(decode(to_char(first_time,'HH24'),'13',1,0)),'99') " 13",
to_char(sum(decode(to_char(first_time,'HH24'),'14',1,0)),'99') " 14",
to_char(sum(decode(to_char(first_time,'HH24'),'15',1,0)),'99') " 15",
to_char(sum(decode(to_char(first_time,'HH24'),'16',1,0)),'99') " 16",
to_char(sum(decode(to_char(first_time,'HH24'),'17',1,0)),'99') " 17",
to_char(sum(decode(to_char(first_time,'HH24'),'18',1,0)),'99') " 18",
to_char(sum(decode(to_char(first_time,'HH24'),'19',1,0)),'99') " 19",
to_char(sum(decode(to_char(first_time,'HH24'),'20',1,0)),'99') " 20",
to_char(sum(decode(to_char(first_time,'HH24'),'21',1,0)),'99') " 21",
to_char(sum(decode(to_char(first_time,'HH24'),'22',1,0)),'99') " 22",
to_char(sum(decode(to_char(first_time,'HH24'),'23',1,0)),'99') " 23"
from v$log_history
group by to_char(first_time,'DD-MON-RR')
order by 1
/
Archive logs generations is directly proportional to the number of log switches happening in a Database. If there are frequent log switches than archive logs might generate more which can affect the performance of Database.


We can use the below queries for archive logs generation details:

a)Archive logs by dates:
set lines 1000
select to_char(first_time,'DD-MON-RR') "Date",
to_char(sum(decode(to_char(first_time,'HH24'),'00',1,0)),'99') " 00",
to_char(sum(decode(to_char(first_time,'HH24'),'01',1,0)),'99') " 01",
to_char(sum(decode(to_char(first_time,'HH24'),'02',1,0)),'99') " 02",
to_char(sum(decode(to_char(first_time,'HH24'),'03',1,0)),'99') " 03",
to_char(sum(decode(to_char(first_time,'HH24'),'04',1,0)),'99') " 04",
to_char(sum(decode(to_char(first_time,'HH24'),'05',1,0)),'99') " 05",
to_char(sum(decode(to_char(first_time,'HH24'),'06',1,0)),'99') " 06",
to_char(sum(decode(to_char(first_time,'HH24'),'07',1,0)),'99') " 07",
to_char(sum(decode(to_char(first_time,'HH24'),'08',1,0)),'99') " 08",
to_char(sum(decode(to_char(first_time,'HH24'),'09',1,0)),'99') " 09",
to_char(sum(decode(to_char(first_time,'HH24'),'10',1,0)),'99') " 10",
to_char(sum(decode(to_char(first_time,'HH24'),'11',1,0)),'99') " 11",
to_char(sum(decode(to_char(first_time,'HH24'),'12',1,0)),'99') " 12",
to_char(sum(decode(to_char(first_time,'HH24'),'13',1,0)),'99') " 13",
to_char(sum(decode(to_char(first_time,'HH24'),'14',1,0)),'99') " 14",
to_char(sum(decode(to_char(first_time,'HH24'),'15',1,0)),'99') " 15",
to_char(sum(decode(to_char(first_time,'HH24'),'16',1,0)),'99') " 16",
to_char(sum(decode(to_char(first_time,'HH24'),'17',1,0)),'99') " 17",
to_char(sum(decode(to_char(first_time,'HH24'),'18',1,0)),'99') " 18",
to_char(sum(decode(to_char(first_time,'HH24'),'19',1,0)),'99') " 19",
to_char(sum(decode(to_char(first_time,'HH24'),'20',1,0)),'99') " 20",
to_char(sum(decode(to_char(first_time,'HH24'),'21',1,0)),'99') " 21",
to_char(sum(decode(to_char(first_time,'HH24'),'22',1,0)),'99') " 22",
to_char(sum(decode(to_char(first_time,'HH24'),'23',1,0)),'99') " 23"
from v$log_history
group by to_char(first_time,'DD-MON-RR')
order by 1
/
b)Archive log generation details Day-wise :

select to_char(COMPLETION_TIME,'DD-MON-YYYY'),count(*)
from v$archived_log group by to_char(COMPLETION_TIME,'DD-MON-YYYY')
order by to_char(COMPLETION_TIME,'DD-MON-YYYY');

c) Archive log count of the day:

select count(*)
from v$archived_log
where trunc(completion_time)=trunc(sysdate);

count of archived logs generated today on hourly basis:
-------------------------------------------------------
select to_char(first_time,'DD-MON-RR') "Date",
to_char(sum(decode(to_char(first_time,'HH24'),'00',1,0)),'99') " 00",
to_char(sum(decode(to_char(first_time,'HH24'),'01',1,0)),'99') " 01",
to_char(sum(decode(to_char(first_time,'HH24'),'02',1,0)),'99') " 02",
to_char(sum(decode(to_char(first_time,'HH24'),'03',1,0)),'99') " 03",
to_char(sum(decode(to_char(first_time,'HH24'),'04',1,0)),'99') " 04",
to_char(sum(decode(to_char(first_time,'HH24'),'05',1,0)),'99') " 05",
to_char(sum(decode(to_char(first_time,'HH24'),'06',1,0)),'99') " 06",
to_char(sum(decode(to_char(first_time,'HH24'),'07',1,0)),'99') " 07",
to_char(sum(decode(to_char(first_time,'HH24'),'08',1,0)),'99') " 08",
to_char(sum(decode(to_char(first_time,'HH24'),'09',1,0)),'99') " 09",
to_char(sum(decode(to_char(first_time,'HH24'),'10',1,0)),'99') " 10",
to_char(sum(decode(to_char(first_time,'HH24'),'11',1,0)),'99') " 11",
to_char(sum(decode(to_char(first_time,'HH24'),'12',1,0)),'99') " 12",
to_char(sum(decode(to_char(first_time,'HH24'),'13',1,0)),'99') " 13",
to_char(sum(decode(to_char(first_time,'HH24'),'14',1,0)),'99') " 14",
to_char(sum(decode(to_char(first_time,'HH24'),'15',1,0)),'99') " 15",
to_char(sum(decode(to_char(first_time,'HH24'),'16',1,0)),'99') " 16",
to_char(sum(decode(to_char(first_time,'HH24'),'17',1,0)),'99') " 17",
to_char(sum(decode(to_char(first_time,'HH24'),'18',1,0)),'99') " 18",
to_char(sum(decode(to_char(first_time,'HH24'),'19',1,0)),'99') " 19",
to_char(sum(decode(to_char(first_time,'HH24'),'20',1,0)),'99') " 20",
to_char(sum(decode(to_char(first_time,'HH24'),'21',1,0)),'99') " 21",
to_char(sum(decode(to_char(first_time,'HH24'),'22',1,0)),'99') " 22",
to_char(sum(decode(to_char(first_time,'HH24'),'23',1,0)),'99') " 23"
from v$log_history
where to_char(first_time,'DD-MON-RR')='16-AUG-10'
group by to_char(first_time,'DD-MON-RR')
order by 1
/

16)I/O Generation:
We can find out CPU and I/O generation details for all the users in the Database with the help of the below query:
-- Show IO per session,CPU in seconds, sessionIOS.
set linesize 140
col spid for a6
col program for a35 trunc
select p.spid SPID,to_char(s.LOGON_TIME,'DDMonYY HH24:MI') date_login,s.username,decode(nvl(p.background,0),1,bg.description, s.program ) program,
ss.value/100 CPU,physical_reads disk_io,(trunc(sysdate,'J')-trunc(logon_time,'J')) days,
round((ss.value/100)/(decode((trunc(sysdate,'J')-trunc(logon_time,'J')),0,1,(trunc(sysdate,'J')-trunc(logon_time,'J')))),2) cpu_per_day
from V$PROCESS p,V$SESSION s,V$SESSTAT ss,V$SESS_IO si,V$BGPROCESS bg
where s.paddr=p.addr and ss.sid=s.sid
and ss.statistic#=12 and si.sid=s.sid
and bg.paddr(+)=p.addr
and round((ss.value/100),0) > 10
order by 8;
To know what the session is doing and what kind of sql it is using:

-- what kind of sql a session is using
set lines 9999
set pages 9999

select s.sid, q.sql_text from v$sqltext q, v$session s
where q.address = s.sql_address
and s.sid = &sid order by piece;

eg: sid=1853

17)Sync arch:
In a Dataguard environment we have to check primary is in sync with the secondary Database.This we can check as follows:
The V$ MANAGED_STANDBY view on the standby database site shows you the activities performed by
both redo transport and Redo Apply processes in a Data Guard environment
SELECT PROCESS, CLIENT_PROCESS, SEQUENCE#, STATUS FROM V$MANAGED_STANDBY;
In some situations, automatic gap recovery may not take place and you will need to perform gap recovery manually. For example, you will need to perform gap recovery manually if you are using logical standby databases and the primary database is not available.
The following sections describe how to query the appropriate views to determine which log files are missing and perform manual recovery.
On a physical standby database
To determine if there is an archive gap on your physical standby database, query the V$ARCHIVE_GAP view as shown in the following example:
SQL> SELECT * FROM V$ARCHIVE_GAP;

If it displays no rows than the primary Database is in sync with the standy Database.If it display any information with row than manually we have to apply the archive logs.

After you identify the gap, issue the following SQL statement on the primary database to locate the archived redo log files on your primary database (assuming the local archive destination on the primary database is LOG_ARCHIVE_DEST_1):
Eg:
SELECT NAME FROM V$ARCHIVED_LOG WHERE THREAD#=1 AND DEST_ID=1 AND SEQUENCE# BETWEEN 7 AND 10;
Copy these log files to your physical standby database and register them using the ALTER DATABASE REGISTER LOGFILE statement on your physical standby database. For example:
SQL> ALTER DATABASE REGISTER LOGFILE
'/physical_standby1/thread1_dest/arcr_1_7.arc';
SQL> ALTER DATABASE REGISTER LOGFILE
'/physical_standby1/thread1_dest/arcr_1_8.arc';

After you register these log files on the physical standby database, you can restart Redo Apply. The V$ARCHIVE_GAP fixed view on a physical standby database only returns the next gap that is currently blocking Redo Apply from continuing. After resolving the gap and starting Redo Apply, query the V$ARCHIVE_GAP fixed view again on the physical standby database to determine the next gap sequence, if there is one. Repeat this process until there are no more gaps.

On a logical standby database:
To determine if there is an archive gap, query the DBA_LOGSTDBY_LOG view on the logical standby database. For example, the following query indicates there is a gap in the sequence of archived redo log files because it displays two files for THREAD 1 on the logical standby database. (If there are no gaps, the query will show only one file for each thread.) The output shows that the highest registered file is sequence number 10, but there is a gap at the file shown as sequence number 6:
SQL> COLUMN FILE_NAME FORMAT a55
SQL> SELECT THREAD#, SEQUENCE#, FILE_NAME FROM DBA_LOGSTDBY_LOG L
2> WHERE NEXT_CHANGE# NOT IN
3> (SELECT FIRST_CHANGE# FROM DBA_LOGSTDBY_LOG WHERE L.THREAD# = THREAD#)
4> ORDER BY THREAD#,SEQUENCE#;

THREAD# SEQUENCE# FILE_NAME
---------- ---------- -----------------------------------------------
1 6 /disk1/oracle/dbs/log-1292880008_6.arc
1 10 /disk1/oracle/dbs/log-1292880008_10.arc

Copy the missing log files, with sequence numbers 7, 8, and 9, to the logical standby system and register them using the ALTER DATABASE REGISTER LOGICAL LOGFILE statement on your logical standby database. For example:
SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE '/disk1/oracle/dbs/log-1292880008_10.arc';

After you register these log files on the logical standby database, you can restart SQL Apply.

The DBA_LOGSTDBY_LOG view on a logical standby database only returns the next gap that is currently blocking SQL Apply from continuing. After resolving the identified gap and starting SQL Apply, query the DBA_LOGSTDBY_LOG view again on the logical standby database to determine the next gap sequence, if there is one. Repeat this process until there are no more gaps.
Monitoring Log File Archival Information:
Step 1 Determine the current archived redo log file sequence numbers.
Enter the following query on the primary database to determine the current archived redo log file sequence numbers:
SQL> SELECT THREAD#, SEQUENCE#, ARCHIVED, STATUS FROM V$LOG
WHERE STATUS='CURRENT';
Step 2 Determine the most recent archived redo log file.
Enter the following query at the primary database to determine which archived redo log file contains the most recently transmitted redo data:
SQL> SELECT MAX(SEQUENCE#), THREAD# FROM V$ARCHIVED_LOG GROUP BY THREAD#;
Step 3 Determine the most recent archived redo log file at each destination.
Enter the following query at the primary database to determine which archived redo log file was most recently transmitted to each of the archiving destinations:
SQL> SELECT DESTINATION, STATUS, ARCHIVED_THREAD#, ARCHIVED_SEQ#
2> FROM V$ARCHIVE_DEST_STATUS
3> WHERE STATUS <> 'DEFERRED' AND STATUS <> 'INACTIVE';

DESTINATION STATUS ARCHIVED_THREAD# ARCHIVED_SEQ#
------------------ ------ ---------------- -------------
/private1/prmy/lad VALID 1 947
standby1 VALID 1 947
The most recently written archived redo log file should be the same for each archive destination listed. If it is not, a status other than VALID might identify an error encountered during the archival operation to that destination.
Step 4 Find out if archived redo log files have been received.
You can issue a query at the primary database to find out if an archived redo log file was not received at a particular site. Each destination has an ID number associated with it. You can query the DEST_ID column of the V$ARCHIVE_DEST fixed view on the primary database to identify each destination's ID number.
Assume the current local destination is 1, and one of the remote standby destination IDs is 2. To identify which log files are missing at the standby destination, issue the following query:
SQL> SELECT LOCAL.THREAD#, LOCAL.SEQUENCE# FROM
2> (SELECT THREAD#, SEQUENCE# FROM V$ARCHIVED_LOG WHERE DEST_ID=1)
3> LOCAL WHERE
4> LOCAL.SEQUENCE# NOT IN
5> (SELECT SEQUENCE# FROM V$ARCHIVED_LOG WHERE DEST_ID=2 AND
6> THREAD# = LOCAL.THREAD#);

THREAD# SEQUENCE#
--------- ---------
1 12
1 13
1 14

18)Purge arch:
We have to make sure the archive logs files are purged safely or move to Tape drive or any other location in order to make space for new archive logs files in the Archive logs destination locations.

19)Recovery status:
In order to do recover make sure you are having latest archive logs,so that you can restore and do the recovery if required.


20) MY DATABASE HEALTH CHECK SCRIPT:
/* SCRIPT FOR MONITORING AND CHECKING HEALTH OF DATABASE-USEFUL FOR PRODUCTION DATABASES */

-- SHOWS RUNNING JOBS
select 'RUNNING JOBS', sid, job,instance from dba_jobs_running;
set lines 1000
-- SHOWS ARCHIVE LOGS GENERAION DETAILS HOURLY AND DATE WISE BASIS
select 'ARCHIVE LOG REPORT',to_char(first_time,'DD-MON-RR') "Date",
to_char(sum(decode(to_char(first_time,'HH24'),'00',1,0)),'99') " 00",
to_char(sum(decode(to_char(first_time,'HH24'),'01',1,0)),'99') " 01",
to_char(sum(decode(to_char(first_time,'HH24'),'02',1,0)),'99') " 02",
to_char(sum(decode(to_char(first_time,'HH24'),'03',1,0)),'99') " 03",
to_char(sum(decode(to_char(first_time,'HH24'),'04',1,0)),'99') " 04",
to_char(sum(decode(to_char(first_time,'HH24'),'05',1,0)),'99') " 05",
to_char(sum(decode(to_char(first_time,'HH24'),'06',1,0)),'99') " 06",
to_char(sum(decode(to_char(first_time,'HH24'),'07',1,0)),'99') " 07",
to_char(sum(decode(to_char(first_time,'HH24'),'08',1,0)),'99') " 08",
to_char(sum(decode(to_char(first_time,'HH24'),'09',1,0)),'99') " 09",
to_char(sum(decode(to_char(first_time,'HH24'),'10',1,0)),'99') " 10",
to_char(sum(decode(to_char(first_time,'HH24'),'11',1,0)),'99') " 11",
to_char(sum(decode(to_char(first_time,'HH24'),'12',1,0)),'99') " 12",
to_char(sum(decode(to_char(first_time,'HH24'),'13',1,0)),'99') " 13",
to_char(sum(decode(to_char(first_time,'HH24'),'14',1,0)),'99') " 14",
to_char(sum(decode(to_char(first_time,'HH24'),'15',1,0)),'99') " 15",
to_char(sum(decode(to_char(first_time,'HH24'),'16',1,0)),'99') " 16",
to_char(sum(decode(to_char(first_time,'HH24'),'17',1,0)),'99') " 17",
to_char(sum(decode(to_char(first_time,'HH24'),'18',1,0)),'99') " 18",
to_char(sum(decode(to_char(first_time,'HH24'),'19',1,0)),'99') " 19",
to_char(sum(decode(to_char(first_time,'HH24'),'20',1,0)),'99') " 20",
to_char(sum(decode(to_char(first_time,'HH24'),'21',1,0)),'99') " 21",
to_char(sum(decode(to_char(first_time,'HH24'),'22',1,0)),'99') " 22",
to_char(sum(decode(to_char(first_time,'HH24'),'23',1,0)),'99') " 23"
from v$log_history
group by to_char(first_time,'DD-MON-RR')
order by 1
/
-- WHAT ALL THE SESSIONS ARE GETTING BLOCKED
select 'SESSIONS BLOCKED',process,sid, blocking_session from v$session where blocking_session is not null;
-- WHICH SESSION IS BLOCKING WHICH SESSION
set lines 9999
set pages 9999
select s1.username || '@' || s1.machine
|| ' ( SID=' || s1.sid || ' ) is blocking '
|| s2.username || '@' || s2.machine || ' ( SID=' || s2.sid || ' ) ' AS blocking_status
from v$lock l1, v$session s1, v$lock l2, v$session s2
where s1.sid=l1.sid and s2.sid=l2.sid
and l1.BLOCK=1 and l2.request > 0
and l1.id1 = l2.id1
and l2.id2 = l2.id2 ;
-- SHOWS BLOCK CHANGES DETAILS AND PHYSICAL READS DETAIL
select a.sid,b.username,block_gets,consistent_gets,physical_reads,block_changes
from V$SESS_IO a,V$SESSION b
where a.sid=b.sid and block_changes > 10000 order by block_changes desc;
-- show IO per session / CPU in seconds. sessionIOS.sql
set linesize 140
col spid for a6
col program for a35 trunc
select p.spid SPID,to_char(s.LOGON_TIME,'DDMonYY HH24:MI') date_login,s.username,decode(nvl(p.background,0),1,bg.description, s.program ) program,ss.value/100 CPU,physical_reads disk_io,(trunc(sysdate,'J')-trunc(logon_time,'J')) days,round((ss.value/100)/(decode((trunc(sysdate,'J')-trunc(logon_time,'J')),0,1,(trunc(sysdate,'J')-trunc(logon_time,'J')))),2) cpu_per_day
from V$PROCESS p,V$SESSION s,V$SESSTAT ss,V$SESS_IO si,V$BGPROCESS bg
where s.paddr=p.addr and ss.sid=s.sid
and ss.statistic#=12 and si.sid=s.sid
and bg.paddr(+)=p.addr
and round((ss.value/100),0) > 10
order by 8;
-- SCRIPT TO IDENTIFY LONG RUNNING STATEMENTS
rem LONGOPS.SQL
rem Long Running Statements
rem Helmut Pfau, Oracle Deutschland GmbH
set linesize 120
col opname format a20
col target format a15
col units format a10
col time_remaining format 99990 heading Remaining[s]
col bps format 9990.99 heading [Units/s]
col fertig format 90.99 heading "complete[%]"
select sid,
opname,
target,
sofar,
totalwork,
units,
(totalwork-sofar)/time_remaining bps,
time_remaining,
sofar/totalwork*100 fertig
from v$session_longops
where time_remaining > 0
/
-- ACTIVE SESSIONS IN DATABASE
select 'ACTIVE SESSION', sid, serial#,machine, osuser,username,status from v$session where username!='NULL' and status='ACTIVE';
-- WHAT SQL A SESSION IS USING
set lines 9999
set pages 9999
select s.sid, q.sql_text from v$sqltext q, v$session s
where q.address = s.sql_address
and s.sid = &sid order by piece;

eg:SID=1844
I would like to add one more script which will tell me details regarding the Size of the Database used,occupied and available and Tablespace usage
details along with hit ratio of various SGA components which can be very helpfull
to monitor the performance of the Databases.

Database_monitor.sql:

ttitle "1. :============== Tablespace Usage Information ==================:" skip 2
set linesize 140
col Total format 99999.99 heading "Total space(MB)"
col Used format 99999.99 heading "Used space(MB)"
col Free format 99999.99 heading "Free space(MB)"
break on report
compute sum of Total space(MB) on report
compute sum of Used space(MB) on report
compute sum of Free space(MB) on report
select a.tablespace_name, round(a.bytes/1024/1024,2) Total,
round( nvl( b.bytes,0)/1024/1024,2) Used,
round(nvl(c.bytes, 0)/1024/1024,2) Free ,
round(nvl(b.bytes,0)*100/nvl(a.bytes,0),2) "% Used"
from sys.sm$ts_avail a, sys.sm$ts_used b, sys.sm$ts_free c
where a.tablespace_name=b.tablespace_name(+)
and b.tablespace_name=c.tablespace_name(+);

ttitle "2. :============== Hit Ratio Information ==================:" skip 2
set linesize 80
clear columns
clear breaks
set pagesize 60 heading off termout off echo off verify off
REM
col val1 new_val lib noprint
select 100*(1-(SUM(Reloads)/SUM(Pins))) val1
from V$LIBRARYCACHE;

ttitle off
col val2 new_val dict noprint
select 100*(1-(SUM(Getmisses)/SUM(Gets))) val2
from V$ROWCACHE;

ttitle off
col val3 new_val phys_reads noprint
select Value val3
from V$SYSSTAT
where Name = 'physical reads';

ttitle off
col val4 new_val log1_reads noprint
select Value val4
from V$SYSSTAT
where Name = 'db block gets';

ttitle off
col val5 new_val log2_reads noprint
select Value val5
from V$SYSSTAT
where Name = 'consistent gets';

ttitle off
col val6 new_val chr noprint
select 100*(1-(&phys_reads / (&log1_reads + &log2_reads))) val6
from DUAL;

ttitle off
col val7 new_val avg_users_cursor noprint
col val8 new_val avg_stmts_exe noprint
select SUM(Users_Opening)/COUNT(*) val7,
SUM(Executions)/COUNT(*) val8
from V$SQLAREA;
ttitle off
set termout on
set heading off
ttitle -
center 'SGA Cache Hit Ratios' skip 2

select 'Data Block Buffer Hit Ratio : '||&chr db_hit_ratio,
' Shared SQL Pool ',
' Dictionary Hit Ratio : '||&dict dict_hit,
' Shared SQL Buffers (Library Cache) ',
' Cache Hit Ratio : '||&lib lib_hit,
' Avg. Users/Stmt : '||
&avg_users_cursor||' ',
' Avg. Executes/Stmt : '||
&avg_stmts_exe||' '
from DUAL;

ttitle "3. :============== Sort Information ==================:" skip 2

select A.Value Disk_Sorts,
B.Value Memory_Sorts,
ROUND(100*A.Value/
DECODE((A.Value+B.Value),0,1,(A.Value+B.Value)),2)
Pct_Disk_Sorts
from V$SYSSTAT A, V$SYSSTAT B
where A.Name = 'sorts (disk)'
and B.Name = 'sorts (memory)';

ttitle "4. :============== Database Size Information ==================:" skip 2


select sum(bytes/1024/1024/1024) Avail from sm$ts_avail union all select sum(bytes/1024/1024/1024) Used from sm$ts_used union all select sum(bytes/1024/1024/1024) Free from sm$ts_free;


Hope this helps you in monitoring your Databases.